

    
      
          
            
  
Introduction

Proteus is a Python package for rapidly developing computer models and
numerical methods. It is focused on models of continuum mechanical
processes described by partial differential equations and on
discretizations and solvers for computing approximate solutions to
these equations. Proteus consists of a collection of Python modules
and scripts. Proteus also uses several C, C++, and Fortran libraries,
which are either external open source packages or part of Proteus, and
several open source Python packages.

The design of Proteus is organized around two goals:


	Make it easy to solve new model equations with existing numerical methods


	Make it easy to solve existing model equations with new numerical methods




We want to improve the development process for models and
methods. Proteus is not intended to be an expert system for solving
partial differential equations. In fact, effective numerical methods
are often physics-based. Nevertheless many physical models are
mathematically represented by the same small set of differential
operators, and effective numerical methods can be developed with minor
adjustments to existing methods. The problem with much existing
software is that the physics and numerics are completely intertwined,
which makes it difficult to extend (and maintain). In Proteus the
description of the physical model and initial-boundary value problems
are nearly “method agnostic”.  This approach has been used in the
developement of a variety of mathematical models and numerical
methods, both of which are described in more detail below
(Capabilities).




Obtaining and Installing Proteus

For learning and experimenting there is an Docker image [https://cloud.docker.com/u/erdc/repository/docker/erdc/proteus].

Proteus is available as source from our public GitHub [https://github.com/erdc/proteus] repository.  If you already
have compilers (C,C++, and Fortran!) and Git installed on your system,
you can install Proteus with the following commands.:

% git clone https://github.com/erdc/proteus
% cd proteus
% make develop
% make test





More information is available on our Wiki [https://github.com/erdc/proteus/wiki], and you can ask for help on
the Developers’ Mailing List [https://groups.google.com/forum/#!forum/proteus-dev].




Running

If you have successfully compiled and tested Proteus then you should be able to do:

% cd $PROTEUS/tests/ci
% $PROTEUS_PREFIX/bin/parun poisson_3d_p.py poisson_3d_c0p1_n.py





The solution will be saved in a file ending in .xmf, which can be
opened with ParaView or Ensight.




Capabilities

Test problems and some analytical solutions have been implemented for


	Poisson’s equation


	The heat equation


	Linear advection-diffusion-reaction equations


	Singly degenerate nonlinear advection-diffusion-reaction equations (including various forms of Burger’s equation)


	Doubly degenerate nonlinear advection-diffusion-reaction equations


	The eikonal (signed distance) equation


	The diffusive wave equations for overland flow


	1D and 2D Shallow Water Equations


	2D Dispersive Shallow Water Equations


	Richards’ equation (mass conservative head- and saturation-based)


	Two-phase flow in porous media with diffuse interface (fully coupled  and IMPES formulations)


	Two-phase flow in porous media with a sharp interface (level set formulation)


	Stokes equations


	Navier-Stokes equations


	Reynolds-Averged Navier-Stokes equations


	Two-phase Stokes/Navier-Stokes/RANS flow with a sharp interface (level set/VOF formulation)


	Linear elasticity




These problems are solved on unstructured simplicial meshes. Simple
meshes can be generated with tools included with Proteus, and more
complex meshes can by imported from other mesh generators. The finite
elements implemented are

Classical methods with various types of stabilization (entropy viscosity, variational multiscale, and algebraic methods)


	\(C_0 P_1\)


	\(C_0 P_2\)


	\(C_0 Q_1\)


	\(C_0 Q_2\)




Discontinuous Galerkin methods


	\(C_{-1} P_0\)


	\(C_{-1} P_1\)  (Lagrange Basis)


	\(C_{-1} P_2\)  (Lagrange Basis)


	\(C_{-1} P_k\)  (Monomial Basis)




Non-conforming and mixed methods


	\(P_1\) non-conforming


	\(C_0 P_1 C_0 P_2\) Taylor-Hood




The time integration methods are


	Backward Euler


	Forward Euler


	\(\Theta\) Methods


	Strong Stability Preserving Runge-Kutta Methods


	Adaptive BDF Methods


	Pseudo-transient continuation




The linear solvers are


	Jacobi


	Gauss-Seidel


	Alternating Schwarz


	Full Multigrid


	Wrappers to LAPACK, SuperLU, and PETSc




The nonlinear solvers are


	Jacobi


	Gauss-Seidel


	Alternating Schwarz


	Newton’s method


	Nonlinear Multigrid (Full Approximation Scheme)


	Fast Marching and Fast Sweeping




Additional tools are included for pre- and post-processings meshes and
solutions files generated by Proteus and other models, including methods for
obtaining locally-conservative velocity fields from \(C_0\) finite
elements.




Release Policy

The releases are numbered major.minor.revision


	A revision increment indicates a bug fix or extension that shouldn’t break any models working with the same major.minor number.


	A minor increment introduces significant new functionality but is mostly backward compatible


	A major increment may require changes to input files and significantly change the underlying Proteus implementation.




These are not hard and fast rules, and there is no time table for releases.
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BoundaryConditions

source: proteus.BoundaryConditions and
proteus.mprans.BoundaryConditions


Usage

This module offers a framework to deal with boundary conditions that can either
be set manually or by using predefined functions that have been optimised
through cython/C++ code.


Import

The base BoundaryConditions module can be imported as follows:

from proteus import BoundaryConditions as bc





The mprans version of BoundaryConditions, adding functionality specific to
multi-phase flows, can be imported as follows:

from proteus.mprans import BoundaryConditions as bc






Note

The base proteus.BoundaryConditions only initialises empty
proteus.BoundaryConditions.BC_Base instances. In practice,
proteus.mprans.BoundaryConditions is always the module imported
for multi-phase flow applications, with pre-populated
proteus.mprans.BoundaryConditions.BC_RANS that include the most
common BCs used in Proteus. It is also usually used through
SpatialTools without being directly imported.











          

      

      

    
 

  


  

    
      
          
            
  
SpatialTools

source: proteus.SpatialTools and
proteus.mprans.SpatialTools


Usage

Using spatial tools


	Create a domain from proteus.Domain.


	Create geometries that will be part of this domain from
proteus.SpatialTools or proteus.mprans.SpatialTools.


	Assemble domain with proteus.SpatialTools.assembleDomain() or proteus.mprans.SpatialTools.assembleDomain().





Import

The base SpatialTools module can be imported as follows:

from proteus import SpatialTools as st





The mprans version of SpatialTools, adding functionality specific to
multi-phase flows, can be imported as follows:

from proteus.mprans import SpatialTools as st








Choosing the domain

The domain class instance is what will hold all geometrical information once it
is assembled, and must be passed as an argument to all shapes created from
SpatialTools. Usually, the following class types are used from
proteus.Domain:


	2D: PlanarStraightLineGraphDomain


	3D: PiecewiseLinearComplexDomain




Those classes should be instantiated with no argument, e.g.:

from proteus import Domain
domain = Domain.PlanarStraightLineGraphDomain().








Assembling the domain

A very important final step not to forget is to assemble the domain once
all the desired geometries have been defined, so that the Domain instance
from proteus.Domain holds all the relevant geometrical information necessary
for running the simulation.

st.assembleDomain(domain)








BoundaryConditions with SpatialTools


Usage

The mprans version of SpatialTools also associate geometry boundaries with
BoundaryCondition instances from mprans.BoundaryConditions. These
BoundaryCondition instances are easily accessible through a dictionary with
predefined names, e.g. for a Rectangle shape instance named my_rectangle,
my_rectangle.BC['x-'] is for accessing the boundary conditions of the left
segment, 'x+' for the right, 'y+' for the top, and 'y-' for the
bottom.

Refer to BoundaryConditions documentation for
more information about the BoundaryConditions module.


Note

The boundary conditions associated with the geometry do not have to be
modified/set before assembling the domain, but removing/adding boundary
conditions to a geometry on top of the predefined ones must be done before.






Linking it to _p.py files


Warning

This does not apply to the TwoPhaseFlow module, which takes care of
setting this automatically.



Linking the boundary conditions to the physical options _p.py files is done the following way (here for RANS2P boundary condition dictionnaries):

dirichletConditions = {0: lambda x, flag: domain.bc[flag].p_dirichlet.uOfXT,
                       1: lambda x, flag: domain.bc[flag].u_dirichlet.uOfXT,
                       2: lambda x, flag: domain.bc[flag].v_dirichlet.uOfXT,
                       3: lambda x, flag: domain.bc[flag].w_dirichlet.uOfXT}

advectiveFluxBoundaryConditions = {0: lambda x, flag: domain.bc[flag].p_advective.uOfXT,
                                   1: lambda x, flag: domain.bc[flag].u_advective.uOfXT,
                                   2: lambda x, flag: domain.bc[flag].v_advective.uOfXT,
                                   2: lambda x, flag: domain.bc[flag].w_advective.uOfXT}

diffusiveFluxBoundaryConditions = {0:{},
                                   1:{1: lambda x, flag: domain.bc[flag].u_diffusive.uOfXT},
                                   2:{2: lambda x, flag: domain.bc[flag].v_diffusive.uOfXT},
                                   3:{3: lambda x, flag: domain.bc[flag].w_diffusive.uOfXT}}





This is always the same in the _p files, as long as it is pointing to the right
boundary conditions (e.g. p_dirichlet for pressure dirichlet). The boundary
conditions themselves can and should be manipulated externally (not from the
_p.py file), such as in the file where the geometries are first defined.








Complete Examples


2D

from proteus import Domain
from proteus.mprans import SpatialTools as st

domain = Domain.PlanarStraightLineGraphDomain()

my_tank = st.Tank2D(domain=domain,
                    dim=[10.,5.])

my_rectangle = st.Rectangle(domain=domain,
                            dim=[1.,1.]
                            coords=[5.,2.5],
                            barycenter=[5.,2.5])
my_rectangle.rotate(rot=3.14/4)
my_rectangle.translate(trans=[0.1,0.1])

st.assembleDomain(domain)

my_tank.BC['x-'].setNoSlip()
my_tank.BC['x-'].u_dirichlet.uOfXT = lambda x, t: 0.1*x
my_tank.BC['x-'].p_dirichlet.uOfXT = lambda x, t: -0.1*x
my_tank.BC['x+'].setFreeSlip()
my_tank.BC['y-'].setFreeSlip()
my_tank.BC['y+'].setAtmosphere()

my_rectangle.BC['x-'].setNoSlip()
my_rectangle.BC['x+'].setNoSlip()
my_rectangle.BC['y-'].setNoSlip()
my_rectangle.BC['y+'].setNoSlip()








3D

from proteus import Domain
from proteus.mprans import SpatialTools as st

domain = Domain.PiecewiseLinearComplexDomain()

my_tank = st.Tank3D(domain=domain,
                    dim=[10.,10.,5.])

my_cylinder = st.Cylinder(domain=domain,
                          radius=1.,
                          height=3.,
                          nPoints=20,
                          coords=[5.,5.,2.5],
                          barycenter=[5.,5.,2.5])
my_cylinder.rotate(rot=3.14/4,
                   axis=[1.,0.,0.],
                   pivot=my_cylinder.barycenter)
my_cylinder.translate(trans=[0.1,0.1,0.1])

st.assembleDomain(domain)

my_tank.BC['x-'].setNoSlip()
my_tank.BC['x-'].u_dirichlet.uOfXT = lambda x, t: 0.1*x
my_tank.BC['x-'].p_dirichlet.uOfXT = lambda x, t: -0.1*x
my_tank.BC['x+'].setFreeSlip()
my_tank.BC['y-'].setFreeSlip()
my_tank.BC['y+'].setFreeSlip()
my_tank.BC['z-'].setFreeSlip()
my_tank.BC['z+'].setFreeSlip()

my_cylinder.BC['x-'].setNoSlip()
my_cylinder.BC['x+'].setNoSlip()
my_cylinder.BC['y-'].setNoSlip()
my_cylinder.BC['y+'].setNoSlip()








3D with STL

#See complete case in  https://github.com/erdc/air-water-vv/tree/master/3d/STLShape
from proteus import Domain
from proteus.mprans import SpatialTools as st
from proteus.Profiling import logEvent as log

domain = Domain.PiecewiseLinearComplexDomain()

SG=st.ShapeSTL(domain,'Blocks.stl')
log("Boundary Tags are:" + str(SG.boundaryTags))


# All boundaries are free-slip for simplicity.
#See https://github.com/erdc/air-water-vv/tree/master/3d/STLShape for more advanced BC's
SG.BC['Top0'].setFreeSlip()
SG.BC['Wall0'].setFreeSlip()
SG.BC['Bed0'].setFreeSlip()
SG.BC['Concrete0'].setFreeSlip()
SG.BC['Inlet0'].setFreeSlip()
SG.BC['Outlet0'].setFreeSlip()










Classes


Base classes

The following classes are accessible with an import from proteus.SpatialTools
and/or proteus.mprans.SpatialTools. Importing them from the mprans module
adds functionality such as the possibility to set multi-phase flow boundary
conditions and relaxation zones.

This is the same procedure as creating a Domain from scratch, with the added
benefit of being able to add more shapes to the domain as separate instances
and easy access to boundary conditions.


CustomShape

The most flexible type of shape, where everything is defined by the user. Any
geometry can be created with this. The minimum arguments necessary for setting
a custom geometry in 2D are: domain, boundaryTags, vertices,
vertexFlags, segments, and segmentFlags. In 3D, the necessary
arguments are: domain, boundaryTags, vertices, vertexFlags,
facets, and facetFlags. For additional arguments, please refer to the
source code in proteus.SpatialTools.

boundaryTags = {'my_tag1': 1,
                'my_tag2': 2,
                'my_tag3': 3}
vertices = [[0.,0.],
            [1.,0.],
            [1.,1.],
            [0.,1.]]
vertexFlags = [boundaryTags['my_tag1'],
               boundaryTags['my_tag1'],
               boundaryTags['my_tag2'],
               boundaryTags['my_tag2']]
segments = [[0, 1],
            [1, 2],
            [2, 3],
            [3, 0]]
# flags can also be set from numbers included in the boundaryTags dictionary
segmentFlags = [1, 2, 3, 2]
my_customshape = st.CustomShape(domain=domain,
                                vertices=vertices,
                                vertexFlags=vertexFlags,
                                segments=segments,
                                segmentFlags=segmentFlags,
                                boundaryTags=boundaryTags)
my_customshape.BC['my_tag1'].setNoSlip()








Rectangle

A simple rectangular shape.

my_rectangle = st.Rectangle(domain=domain,
                            dim=[10.,2.],
                            coords=[5.,1.],
                            barycenter=[5.,1.])








Circle

A simple circular shape.

my_circle = st.Circle(domain=domain,
                      radius=5.,
                      coords=[5.,5.],
                      barycenter=[5.,5.],
                      nPoints=20)








Cuboid

A simple cuboidal shape.

my_cuboid = st.Cuboid(domain=domain,
                      dim=[10.,10.,2.],
                      coords=[5.,5.],
                      barycenter=[5.,5.])








Cylinder

A simple cylindrical shape.

my_cylinder = st.Circle(domain=domain,
                        radius=5.,
                        height=10.
                        nPoints=20,
                        coords=[5.,5.,7.5],
                        barycenter=[5.,5.,7.5])








Sphere

A simple spherical shape.

my_sphere = st.Sphere(domain=domain,
                      radius=5.,
                      coords=[2.,2.],
                      barycenter=[2.,2.],
                      nSectors=10)








ShapeSTL

For importing STL geometries. It needs a .stl ASCII file, and does not
currently work with binary files. The STL geometry is converted in a Proteus
readable format, automatically creating vertices and facets, and a single
boundary tag/flag for the whole STL geometry.

my_stl = st.ShapeSTL(domain=domain,
                     filename='path/to/my/file.stl')





The function has the capability of reading multi-block stl ASCII files. Multiblock files can be created by concatenating multiple STL files containing a single geometry block into one file. You can do this quickly in a bash shell as follows:

cat file_1.stl file_2.stl file_3.stl > block.stl





solid block0
...
facet normal ni nj nk
   outer loop
     vertex v1x v1y v1z
     vertex v2x v2y v2z
     vertex v3x v3y v3z
     endloop
endfacet
...
endsolid
solid block1
...
endsolid
...
solid blockFinal
...
endsolid





When reading the block stl file, the ShapeSTL class will read also the stl blocks and, in addition to vertices and facets, tags for boundaryTags, vertices and facets will be assigned. The names of boundaries are given according to the naming of the blocks. E.g. block0 will form boundary block0 etc.

The user should be able to mesh a whole domain, as long as the STL files create a watertight domain. A simple example of setting up a 3D domain is given in the beginning of this section and the air-water-vv repository https://github.com/erdc/air-water-vv/blob/master/3d/STLShape/






mprans specific

The following classes are for use with multi-phase flow and can only be
imported from proteus.mprans.SpatialTools.


Tank2D

The Tank2D class can be used to create a rectangular tank. This class allows
for “sponge layers”, or “relaxation zones” that are usually used for wave
absorption or wave generation to get rid of reflected waves in the domain. The
lower left corner of the tank is at the origin [0.,0.] when created (but it
can still be translated later on), and sponge layers extend outwards of the
numerical tank. A Tank2D of dimensions [10.,2.] and sponge layers of
length 3. on both sides will have a total domain size of [16,2], spanning
from x=-3 to x=13.

my_tank = st.Tank2D(domain=domain,
                    dim=[10.,2.])
# make sponge layers
my_tank.setSponge(x_n=3., x_p=3.)
# set absorption zone (x_p -> x+)
my_tank.setAbsorptionZones(dragAlpha=1.e6,
                           x_p=True)
# set generation zone
from proteus import WaveTools as wt (x_n -> x-)
my_wave = wt.MonochromaticWave()
he = 0.01
my_tank.setGenerationZones(dragAlpha=1.e6,
                           smoothing=3*he,
                           wave=wave,
                           x_n=True)
# set boundary conditions
my_tank.BC['y+'].setAtmosphere()
my_tank.BC['y-'].setFreeSlip()
my_tank.BC['x+'].setFreeSlip()
my_tank.BC['x-'].setUnsteadyTwoPhaseVelocityInlet(wave=my_wave
                                                  smoothing=3*he)
my_tank.BC['sponge'].setNonMaterial()






Important

Tank2D instances should not be rotated as this can lead to problems with
relaxation zones and boundary conditions.






Tank3D

Very similar to the Tank3D, it is a cuboid for 3D domains with the
possibility of adding sponge layers.

my_tank = st.Tank2D(domain=domain,
                    dim=[10.,10., 2.])
# make sponge layers
my_tank.setSponge(x_n=3., x_p=3., y_p=3., y_n=3.)
# set absorption zones
my_tank.setAbsorptionZones(dragAlpha=1.e6,
                           x_p=True,
                           y_p=True,
                           y_n=True)
# set generation zone
from proteus import WaveTools as wt (x_n -> x-)
my_wave = wt.MonochromaticWave()
he = 0.01
my_tank.setGenerationZones(dragAlpha=1.e6,
                           smoothing=3*he,
                           wave=wave,
                           x_n=True)
# set boundary conditions
my_tank.BC['z+'].setAtmosphere()
my_tank.BC['z-'].setFreeSlip()
my_tank.BC['y-'].setFreeSlip()
my_tank.BC['x+'].setFreeSlip()
my_tank.BC['x-'].setUnsteadyTwoPhaseVelocityInlet(wave=my_wave
                                                  smoothing=3*he)
my_tank.BC['sponge'].setNonMaterial()






Important

Tank3D instances should not be rotated as this can lead to problems with
relaxation zones and boundary conditions.






TankWithObstacle2D











          

      

      

    
 

  


  

    
      
          
            
  
TwoPhaseFlow





          

      

      

    
 

  


  

    
      
          
            
  
WaveTools

source: proteus.WaveTools


Usage

This module offers a framework for calculating the free-surface elevation and wave velocities based on various wave theories. Wave theories are organised in classes within the module. The module is written in Python / Cython and C++ for optimising calculation speed.


Import in command line

Once installed Proteus, you can open a python or ipython command line and type

from proteus import WaveTools as wt





You can see information on the module (including available classes) by typing:

help(wt)





and you can see a list of classes and functions by typing

wt.__all__





Each function or class has documentation info which is accessible by typing

help(wt.function)
help(wt.class)
help(wt.class.function)








List of wave theories

Available classes that correspond to wave theories are

SteadyCurrent - Introduce steady currents with ramp time

SolitaryWave - Generate 1st order solitary waves

MonochromaticWaves - Generate linear and nonlinear monochromatic waves. Nonlinear wave theory according to Fenton’s Fourier transform [http://johndfenton.com/Steady-waves/Fourier.html]

NewWave - Generate waves according to NewWave theory Tromans et al 1991 [https://www.onepetro.org/conference-paper/ISOPE-I-91-154]

RandomWaves - Generate plane random waves from JONSWAP or Pierson Moskovitch

MultiSpectraRandomWaves - Generate random waves by overlaying multiple frequency spectra. Wave spectra can meet in different angles

DirectionalWaves - Generate random waves using JOSNWAP / PM spectra for frequencies and cos-2s/Mitsuyashu spectra for directions

TimeSeries - Generate waves from a given free-surface time series. Time series can be reconstructed using direct or windowed methods

RandomWavesFast - Same as RandomWaves only much more computationally efficient, see Dimakopoulos et al 2019 [https://www.icevirtuallibrary.com/doi/abs/10.1680/jencm.17.00016]

RandomNLWaves  - Generate plane random waves from JONSWAP or RM, using 2nd order theory, following Dalzell’s formulae [https://www.sciencedirect.com/science/article/abs/pii/S0141118799000085]

RandomNLWavesFast - Same as  RandomNLWaves only much more computationally efficient, by using the approach of Dimakopoulos et al 2019 [https://www.icevirtuallibrary.com/doi/abs/10.1680/jencm.17.00016]

CombineWaves - Generate waves by combining any of the wave theories above




How to use in Proteus

The wave tools module is loaded at the preample as in the case of the command line:

Then the target wave theory is set, by initializing the relevant class as follows

The wave theory is passed through the setUnsteadyTwoPhaseVelocityInlet boundary condition as follows:

tank.BC['x-'].setUnsteadyTwoPhaseVelocityInlet(wave, smoothing=smoothing, vert_axis=1)





If the relaxation zone method is used, then the class should be passed through the relevant setGenerationZones function

tank.setGenerationZones(x_n=True, waves=wave, dragAlpha=dragAlpha, smoothing = smoothing)





Guidance for using the setUnsteadyTwoPhaseVelocityInlet and setGenerationZones functions are given in the BoundaryConditions [https://erdc.github.io/proteus-doc/tools/boundary_conditions.html] and RelaxationZone [https://erdc.github.io/proteus-doc/tools/relaxation_zone.html] sections of the documentation

Simple examples of usage within the context of a 2D numerical tank can be found in air-water-vv [https://github.com/erdc/air-water-vv/tree/master/2d/numericalTanks]




How to use as stand-alone tool

After importing the tool in a python interface (command line, editor) following the examples above, you can load a class that corresponds to a wave theory, as follows:

wave = wt.RandomWavesFast(Tstart=0.,
                      Tend=5000.,
                      x0=np.array([0.,0.,0.])
                      Tp=2.5,
                      Hs=0.1,
                      mwl=0.5,
                      depth=0.5,
                      waveDir=np.array([1,0,0]),
                      g=np.array([0,-9.81,0]),
                      N=2000,
                      bandFactor=2.,
                      spectName="JONSWAP",
                      Lgen=1.,
                      Nwaves=16,
                      Nfreq=32,
                      checkAcc=True,
                      fast=True)





Then the free surface and velocity for a point in space and time can be calculated as follows:

x0 = [1.,0.,0.]
t0 = 0.
U = wave.u(x0,t0)





Full time series can be calculated and plotted by appropriately manipulating the calculations and storing in arrays, e.g.:

x0 = [1.,0.,0.]
time_array = np.linspace(0,10,1000)
eta = np.zeros(len(time_array),)
for i,t in enumerate(time_array):
     eta[i] = wave.eta(x0,t)
import matplotlib.pyplot as plt
plt.plot(time_array,eta)
plt.xlabel("Time (s)")
plt.ylabel("Free-surface elevation (m)")
plt.savefig("Free-surface.pdf")
plt.show()













          

      

      

    
 

  


  

    
      
          
            
  
Body Dynamics


Implementation

The module described in this page can be imported as follows:

from proteus.mbd import CouplingFSI as fsi





Proteus uses wrappers and modified/derived classes from the Chrono engine, an open-source multibody dynamics library available at https://github.com/projectchrono/chrono.

The bodies and cables classes described below can interact with proteus models
such as Navier-Stokes to retrieve forces and moments, moving (ALE) mesh for
moving the domain with the structure, and added-mass model.




Classes


ProtChSystem

The ProtChSystem class has a pointer to a Chrono ChSystem, and holds the
general options for the Chrono simulation, such as time step size, gravity,
etc. All the physical bodies described must be associated to a ProtChSystem
instance.

import pychono
from proteus.mbd import CouplingFSI as fsi

my_system = fsi.ProtChSystem()
g = pychrono.ChVectorD(0., 0., -9.81)
my_system.ChSystem.Set_G_acc(g)
my_system.setTimeStep(0.001)  # the time step for Chrono calculations






Important

The ProtChSystem instance itself must be added to the auxiliaryVariables
list of the Navier-Stokes model in order to calculate and retrieve the fluid
forces from the fluid pressure field provided by Proteus at the boundaries
of the different bodies.






ProtChBody

Class for creating a rigid body. It has a Chrono ChBody body variable
(ProtChBody.ChBody) accessible within python with some of the
functionalities/functions of Chrono ChBody. It must be associated to a
ProtChSystem instance in order to be included in the multibody dynamics
simulation. This can be done with the passing of the system argument as the
ProtChBody instance is created (see example below). Otherwise, the function
ProtChSystem.addProtChBody(my_body) can be called separately.

my_body = fsi.ProtChBody(system=my_system)
my_body.attachShape(my_shape)  # sets everything automatically
my_body.setRecordValues(all_values=True) # record everything





When set up properly and running with a Proteus Navier-Stokes simulation, the
fluid pressure will be applied on the boundaries of the rigid body. The ChBody
will be moved accordingly, as well as its boundaries (supposing that a moving
mesh or immersed boundaries are used).


Attention

The ProtChBody.ChBody  variable is actually using a derived class from the
base Chrono ChBody in order to add the possibility of using an added-mass
matrix (see ChBodyAddedMass in proteus.mbd.ChRigidBody.h).






ProtChMesh

This class creates a ChMesh that is needed to create moorings.

my_mesh = fsi.ProtChMesh(system=my_system)








ProtChMoorings

This class is for easily creating cables. The following properties must be
known in order to instantiate a ProtChMoorings: ProtChSystem instance,
Mesh instance, length for the length of the cable/segment, nb_elems for
the number of elements along the cable/segment, d for the diameter of the
cable/segment, rho for the density of the cable/segment, E for the Young
modulus of the cable/segment.

my_mooring = fsi.ProtChMoorings(system=my_system,
                                mesh=my_mesh,
                                length=np.array([10.]),
                                nb_elems=np.array([10], dtype=np.int_32),
                                d=np.array([0.01]),
                                rho=np.array([300.2]),
                                E=np.array([1e9]))
# set function to place the nodes along cable ('s' is the position along the 1D cable)
fpos = lambda s: np.array([s, 1., 0.])  # position along cable
ftan = lambda s: np.array([1., 0., 0.])  # tangent of cable along cable
my_mooring.setNodesPositionFunction(function_position=fpos,
                                    function_tangent=ftan)
# set the nodes position from the function
my_mooring.setNodesPosition()
# add a body as fairlead
my_mooring.attachBackNodeToBody(my_body)
# fix front node as anchor
my_mooring.fixFrontNode(True)





Setting the position function is useful when a relatively complex layout of the
cable is desired, such as a catenary shape.


Note

The reason for the array structure for the length, nb_elems, d, rho,
and E parameters is that a cable can be multi-segmented (different
sections of the same cable having different material properties).






ProtChAddedMass

A class to deal with the added mass model from proteus.mprans.AddedMass. This
class should not be instantiated manually and will be automatically
instantiating as a variable of ProtChSystem (accessible as
my_system.ProtChAddedMass). It is used to build the added mass matrix for the
rigid bodies.


Important

This class instance must be passed to the AddedMass model
auxiliaryVariables to have any effect
(auxiliaryVariables.append(my_system.ProtChAddedMass)








Postprocessing Tools


ProtChBody

The data related to mooring cables is saved in an csv file, usually
[my_body.name].csv. Additionally, if the added mass model was used, the
values of the added mass matrix are available in [my_body.name]_Aij_.csv




ProtChMoorings

The data related to mooring cables is saved in an hdf5 file, usually
[my_mooring.name].h5, which can be read directly with h5py. Another way to
read and visualise the data is to use the associated [my_mooring.name].xmf.
The following script must be first ran (note that there is no extension for the
file name):
.. code-block:

{PROTEUS_DIR}/scripts/gatherTimes.py -f [my_mooring.name]





where {PROTEUS_DIR} is the root directory of the Proteus installation. This
will create [my_mooring.name]_complete.xmf which can be opened in Paraview
to navigate the time steps that have been recorded.









          

      

      

    
 

  


  

    
      
          
            
  
Free Surface

There are two implementations for dealing with the free surface.


VOF - NCLS

In this implementation, the following 4 models must be solved in order:


	Volume of Fluid (VOF): proteus.mprans.VOF


	Non-conservative level set (NCLS): proteus.mprans.NCLS


	Redistancing: proteus.mprans.RDLS


	Mass correction: proteus.mprans.MCorr







CLSVOF

In this implementation, a conservative level set is used and only the following
model must be solved: proteus.mprans.CLSVOF.







          

      

      

    
 

  


  

    
      
          
            
  
Mesh Adaptivity





          

      

      

    
 

  


  

    
      
          
            
  
Mesh Motion

proteus.mprans.MoveMesh

proteus.mprans.MoveMeshMonitor





          

      

      

    
 

  


  

    
      
          
            
  
Navier-Stokes


Description

There are currently 3 implementations of Navier-Stokes equations in proteus:


	Two-phase flow (e.g. air/water)


	Three-phase flow (e.g. air/water/sediment)


	Two-phase flow with immersed boundaries (solid)







Two-Phase

The two-phase implementation of Navier-Stokes, with source documentation
available here: proteus.mprans.RANS2P.




Three-Phase

The three-phase implementation of Navier-Stokes, with source documentation
available here: proteus.mprans.RANS3P.




Dealing with Moving Domains

When dealing with moving domains, the option movingDomain must be set to
True. This is necessary to signal to the model that mesh nodes velocity is
to be expected from an external model.


Moving (ALE) Mesh

In the current implementation, if a model for moving the mesh is used such as
proteus.mprans.MoveMesh, it should be the first model to be solved,
as the mesh velocity is calculated from the previous time step.




Immersed Boundaries

The immersed boundary (three-phase) implementation of Navier-Stokes, with
source documentation available here: proteus.mprans.RANS2P_IB.









          

      

      

    
 

  


  

    
      
          
            
  
Shallow Water Flows


Description

There are currently 2 different models that describe shallow water flow in Proteus:


	Classical Saint-Venant equations (e.g. Shallow Water equations)


	Dispersive shallow water model based on the Green-Naghdi equations (e.g. mGN equations)







Shallow Water equations

The Shallow Water equations are a set of partial differential equations that form a
hyperbolic system. They can be used to describe a body of water evolving under
the action of gravity under the assumption that the deformations of the free surface
are small compared to the water height.

The implementation of the SWEs with source documentation is
available here: proteus.mprans.SW2DCV.




Modified Green-Naghdi equations

The modified Green-Naghdi equations are a set of partial differential equations
that form a hyperbolic system and are an O(h) approximation to the traditional
Green-Naghdi equations, where h is the mesh size. The Green-Naghdi equations
are used to describe dispersive water waves.

The implementation of the mGN equations with source documentation is
available here: proteus.mprans.GN_SW2DCV.




Running the tests

All tests that concern shallow water flows can be found at proteus.SWFlows.tests.
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